3D microfluidic chips with integrated functional microelements fabricated by a femtosecond laser for studying the gliding mechanism of cyanobacteria.
نویسندگان
چکیده
Phormidium, a genus of filamentous cyanobacteria, forms endosymbiotic associations with seedling roots that accelerate the growth of the vegetable seedlings. Understanding the gliding mechanism of Phormidium will facilitate improved formation of this association and increased vegetable production. To observe the gliding movements, we fabricated various microfluidic chips termed nanoaquariums using a femtosecond (fs) laser. Direct fs laser writing, followed by annealing and successive wet etching in dilute hydrofluoric acid solution, can easily produce three-dimensional (3D) microfluidics with different structures embedded in a photostructurable glass. Using the fs laser, optical waveguides and filters were integrated with the microfluidic structures in the microchips, allowing the gliding mechanism to be more easily clarified. Using this apparatus, we found that CO(2) secreted from the seedling root attracts Phormidium in the presence of light, and determined the light intensity and specific wavelength necessary for gliding.
منابع مشابه
High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication
High efficiency fabrication and integration of three-dimension (3D) functional devices in Lab-on-a-chip systems are crucial for microfluidic applications. Here, a spatial light modulator (SLM)-based multifoci parallel femtosecond laser scanning technology was proposed to integrate microstructures inside a given 'Y' shape microchannel. The key novelty of our approach lies on rapidly integrating ...
متن کاملIn-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon
Silicon is an excellent material for microelectronics and integrated photonics1-3 with untapped potential for mid-IR optics4. Despite broad recognition of the importance of the third dimension5,6, current lithography methods do not allow fabrication of photonic devices and functional microelements directly inside silicon chips. Even relatively simple curved geometries cannot be realised with te...
متن کامل3D Multi-Microchannel Helical Mixer Fabricated by Femtosecond Laser inside Fused Silica
Three-dimensional (3D) multi-microchannel mixers can meet the requirements of different combinations according to actual needs. Rapid and simple creation of 3D multi-microchannel mixers in a “lab-on-a-chip” platform is a significant challenge in micromachining. In order to realize the complex mixing functions of microfluidic chips, we fabricated two kinds of complex structure micromixers for mu...
متن کاملCompact 3D Microfluidic Channel Structures Embedded in Glass Fabricated by Femtosecond Laser Direct Writing
We demonstrate rapid fabrication of complex three-dimensional (3D) microfluidic channels with lengths up to ~6.0 cm within a tiny volume down to ~80 nl in glass substrates by femtosecond laser direct writing, which, to the best of our knowledge, is the longest microfluidic channel directly embedded in glass by femtosecond laser microprocessing. The fabrication mainly includes the following two ...
متن کاملFemtosecond Laser Fabrication of Monolithically Integrated Microfluidic Sensors in Glass
Femtosecond lasers have revolutionized the processing of materials, since their ultrashort pulse width and extremely high peak intensity allows high-quality micro- and nanofabrication of three-dimensional (3D) structures. This unique capability opens up a new route for fabrication of microfluidic sensors for biochemical applications. The present paper presents a comprehensive review of recent a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Lab on a chip
دوره 11 12 شماره
صفحات -
تاریخ انتشار 2011